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Question 1

a) Let V be a K-vector space.

i) Which subsets of V are linearly independent? State the definition. [4]

ii) Let X be a maximallinearly independent subset of V. Prove that X is a basis

of V. [5]

b) State the theorem pertaining to bases of a vector space. [4]

Question 2

Let V be a normed vector space over K.

a) If (a,)n is a convergent sequence in X, prove that thelimit of (a,,)~ belongs to X. [4]

b) Let c € X. Prove that there exists a sequence in X which convergesto c. [6]

c) Prove that the closure of a subspace of V is a subspace of V. [6]

Question 3

Let V be a normed K-vector space.

a) Let (a@p)~y be a sequence in V. Prove that (a,)n is a Cauchy sequence in V if and

only if for each ¢ > 0, there exists some N € N suchthat |l/a, — ay]|| < forall
n>QN. [4]

b) Let S*a, be an absolutely convergent series in V.

i) Prove that }> a, is a Cauchy sequence. [6]

ii) Is }\ a, convergent? Explain your answer. [4]



Question 4

Let V be a normed K-vector space and y:V — K linear form such that y ¥ 0.

a) Prove that H := ker y is a hyperplane of V. [5]

b) Show that H is closed or dense. [4]

c) If H is dense, show that ¢ is not continuous. [6]

Question 5

Let V and W be normed vector spaces over the samefield IK and let f:V — W bea

continuous linear mapping.

 a) Whatis ||f|] by definition? If || || = 0, show that f = 0. [5]

b) Prove that || f(«)|] < ||f]l|lz|| for all 2 e V [4]

c) Show that f is Lipschitz continuous. [3]

Question 6

a) What is a Hermitian vector space? State the definition. [4]

b) Let (V,®) be a Hermitian vector space.

i) State and prove the Cauchy-Schwarz inequality. [6]

ii) Show that

lel] = VO@,2)
defines a norm on V. [5]
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Question 7

a) Let V,W be normed vector spaces over the same field K and let f:V —- W bea

~ continuous linear mapping. Let U be asubspace of V andlet g denote therestriction

of f to U. Howare||g|| and || f|| related? Explain! [5]

b) State the theorem of Hahn-Banach. [4]

c) Let V be a normed vector space and a € V — {0}. Prove that there exists a closed
hyperplane H of V such that [a] @ H=V. [6]

Endof the question paper.


